Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37757456

RESUMO

The laboratory diagnosis of latent tuberculosis is often performed using interferon-gamma release assays. Here, we compared two enzyme-linked immunosorbent assay-based interferon-gamma release assays, namely, the newly developed Standard E TB-Feron enzyme-linked immunosorbent assay (STFE) and the QuantiFERON-TB Gold PLUS assay (QFT-GP), using samples from 155 participants. The STFE is based on using whole EAST6 and CFP10 recombinant antigens for latent tuberculosis diagnosis. The participants were classified into four groups and screened using both assays per the manufacturers' instructions. Thereafter, two statistical analyses were conducted to compare the obtained results. First, the STFE results were compared with the QTF-GP results (used as the gold standard) to calculate the total concordance, sensitivity, and specificity of STFE. Second, positivity and negativity concordances were calculated to differentiate healthy participants from participants with tuberculosis. The STFE showed 97% and 94% sensitivity and specificity, respectively. Furthermore, its positivity and negativity concordances were 91% and 98%, respectively. These results indicate the coordinated clinical performance of STFE in detecting latent tuberculosis and its improved performance in targeting tuberculosis-infected participants. Based on the comparison of the latent tuberculosis diagnostic abilities of STFE and QFT-GP, we establish the suitability and superior performance of STFE as a diagnostic tool.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Tuberculose Latente/diagnóstico , Tuberculose/diagnóstico , Testes de Liberação de Interferon-gama/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Mycobacterium tuberculosis/genética
2.
Int J Mycobacteriol ; 11(3): 268-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260445

RESUMO

Background: Tuberculosis (TB) is a severe public health challenge in Korea. Of all Mycobacterium tuberculosis (M. tb) strains, the Beijing genotype strain reportedly correlates with hypervirulence and drug resistance. Hence, an early identification of the Beijing genotype strain of M. tb plays a significant role in initial TB treatment. Kogenebiotech® (KoRT-polymerase chain reaction [PCR]) has developed a real-time PCR 17 18 kit to determine the Beijing genotype strain classified as M. tb. To determine the feasibility of the commercially produced KoRT-PCR kit in identifying the M. tb strain. Methods: We used 100 clinical isolates of M. tb and 100 non-M. tb samples for the assessment. We evaluated the overall concordance between the KoRT-PCR kit and the mycobacterial interspersed repetitive unite variable number tandem repeat typing kit (GenoScreen, Lille, France). Moreover, we measured the detection limits based on the chromosomal DNA copies for the KoRT-PCR kit. In addition, we determined the reproducibility among individual technicians using the KoRT-PCR. Results: The KoRT-PCR kit successfully discriminated all M. tb (confidence interval [CI]: 96.38%-100.00% for both sensitivity and specificity) and Beijing genotype strain (CI: 95.70%-100.00% for sensitivity and 96.87%-100.00% for specificity). We confirmed no significant deviation in the reproducibility between the technicians. Conclusions: The KoRT-PCR kit displayed sufficient capability of discriminating the Beijing genotype strain, which enabled the rapid identification of the Beijing genotype strain from the M. tb clinical isolates.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Humanos , Mycobacterium tuberculosis/genética , Reação em Cadeia da Polimerase em Tempo Real , Pequim , Reprodutibilidade dos Testes
4.
J Appl Microbiol ; 133(2): 1089-1098, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35543341

RESUMO

AIMS: The discovery of antiviral substances to respond to COVID-19 is a global issue, including the field of drug development based on natural materials. Here, we showed that chitosan-based substances have natural antiviral properties against SARS-CoV-2 in vitro. METHODS AND RESULTS: The molecular weight of chitosan-based substances was measured by the gel permeation chromatography analysis. In MTT assay, the chitosan-based substances have low cytotoxicity to Vero cells. The antiviral effect of these substances was confirmed by quantitative viral RNA targeting the RdRp and E genes and plaque assay. Among the substances tested, low molecular weight chitooligosaccharide decreased the fluorescence intensity of SARS-CoV-2 nucleocapsid protein of the virus-infected cells in a dose-dependent manner. CONCLUSIONS: In conclusion, the chitooligosaccharide, a candidate for natural treatment, has antiviral effects against the SARS-CoV-2 virus in vitro. SIGNIFICANCE AND IMPACT OF STUDY: In this study, it was suggested for the first time that chitosan-based substances such as chitooligosaccharide can have an antiviral effect on SARS-CoV-2 in vitro.


Assuntos
Tratamento Farmacológico da COVID-19 , Quitosana , Animais , Antivirais/farmacologia , Quitosana/farmacologia , Chlorocebus aethiops , Peso Molecular , Oligossacarídeos , SARS-CoV-2 , Células Vero
5.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054777

RESUMO

Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections. Its resistance to current antimicrobial drugs makes it the most difficult non-tuberculous mycobacteria (NTM) to treat with a treatment success rate of 45.6%. Therefore, there is a need for new therapeutic agents against M. abscessus. We identified 10-DEBC hydrochloride (10-DEBC), a selective AKT inhibitor that exhibits inhibitory activity against M. abscessus. To evaluate the potential of 10-DEBC as a treatment for lung disease caused by M. abscessus, we measured its effectiveness in vitro. We established the intracellular activity of 10-DEBC against M. abscessus in human macrophages and human embryonic cell-derived macrophages (iMACs). 10-DEBC significantly inhibited the growth of wild-type M. abscessus and clinical isolates and clarithromycin (CLR)-resistant M. abscessus strains. 10-DEBC's drug efficacy did not have cytotoxicity in the infected macrophages. In addition, 10-DEBC operates under anaerobic conditions without replication as well as in the presence of biofilms. The alternative caseum binding assay is a unique tool for evaluating drug efficacy against slow and nonreplicating bacilli in their native caseum media. In the surrogate caseum, the mean undiluted fraction unbound (fu) for 10-DEBC is 5.696. The results of an in vitro study on the activity of M. abscessus suggest that 10-DEBC is a potential new drug for treating M. abscessus infections.


Assuntos
Antibacterianos , Macrófagos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Proteínas Proto-Oncogênicas c-akt , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrófagos/efeitos dos fármacos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Oxazinas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores
6.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681686

RESUMO

Mycobacterium abscessus (M. abscessus) causes chronic pulmonary infections and is the most difficult non-tuberculous mycobacteria (NTM) to treat due to its resistance to current antimicrobial drugs, with a treatment success rate of 45.6%. Thus, novel treatment drugs are needed, of which we identified the drug clomiphene citrate (CC), known to treat infertility in women, to exhibit inhibitory activity against M. abscessus. To assess the potential of CC as a treatment for M. abscessus pulmonary diseases, we measured its efficacy in vitro and established the intracellular activity of CC against M. abscessus in human macrophages. CC significantly inhibited the growth of not only wild-type M. abscessus strains but also clinical isolate strains and clarithromycin (CLR)-resistant strains of M. abscessus. CC's drug efficacy did not have cytotoxicity in the infected macrophages. Furthermore, CC worked in anaerobic non-replicating conditions as well as in the presence of biofilm. The results of this in vitro study on M. abscessus activity suggest the possibility of using CC to develop new drug hypotheses for the treatment of M. abscessus infections.


Assuntos
Clomifeno/farmacologia , Macrófagos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clomifeno/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Células THP-1
7.
Polymers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922136

RESUMO

Face masks will be used to prevent pandemic recurrence and outbreaks of mutant SARS-CoV-2 strains until mass immunity is confirmed. The polypropylene (PP) filter is a representative disposable mask material that traps virus-containing bioaerosols, preventing secondary transmission. In this study, a copper thin film (20 nm) was deposited via vacuum coating on a spunbond PP filter surrounding a KF94 face mask to provide additional protection and lower the risk of secondary transmission. Film adhesion was improved using oxygen ion beam pretreatment, resulting in cuprous oxide formation on the PP fiber without structural deformation. The copper-coated mask exhibited filtration efficiencies of 95.1 ± 1.32% and 91.6 ± 0.83% for NaCl and paraffin oil particles, respectively. SARS-CoV-2 inactivation was evaluated by transferring virus-containing media onto the copper-coated PP filters and subsequently adding Vero cells. Infection was verified using real-time polymerase chain reaction and immunochemical staining. Vero cells added after contact with the copper-coated mask did not express the RNA-dependent RNA polymerase and envelope genes of SARS-CoV-2. The SARS-CoV-2 nucleocapsid immunofluorescence results indicated a reduction in the amount of virus of more than 75%. Therefore, copper-coated antiviral PP filters could be key materials in personal protective equipment, as well as in air-conditioning systems.

8.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967077

RESUMO

The increase in drug-resistant Mycobacterium abscessus, which has become resistant to existing standard-of-care agents, is a major concern, and new antibacterial agents are strongly needed. In this study, we introduced etamycin that showed an excellent activity against M. abscessus. We found that etamycin significantly inhibited the growth of M. abscessus wild-type strain, three subspecies, and clinical isolates in vitro and inhibited the growth of M. abscessus that resides in macrophages without cytotoxicity. Furthermore, the in vivo efficacy of etamycin in the zebrafish (Danio rerio) infection model was greater than that of clarithromycin, which is recommended as the core agent for treating M. abscessus infections. Thus, we concluded that etamycin is a potential anti-M. abscessus candidate for further development as a clinical drug candidate.


Assuntos
Doenças dos Peixes , Macrolídeos/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/crescimento & desenvolvimento , Peixe-Zebra/microbiologia , Animais , Feminino , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Camundongos
9.
Molecules ; 24(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835481

RESUMO

Mycobacterium abscessus is a rapid-growing, multidrug-resistant, non-tuberculous mycobacterial species responsible for a variety of human infections, such as cutaneous and pulmonary infections. M. abscessus infections are very difficult to eradicate due to the natural and acquired multidrug resistance profiles of M. abscessus. Thus, there is an urgent need for the development of effective drugs or regimens against M. abscessus infections. Here, we report the activity of a US Food and Drug Administration approved drug, thiostrepton, against M. abscessus. We found that thiostrepton significantly inhibited the growth of M. abscessus wild-type strains, subspecies, clinical isolates, and drug-resistant mutants in vitro and in macrophages. In addition, treatment of macrophages with thiostrepton significantly decreased proinflammatory cytokine production in a dose-dependent manner, suggesting an inhibitory effect of thiostrepton on inflammation induced during M. abscessus infection. We further showed that thiostrepton exhibits antimicrobial effects in vivo using a zebrafish model of M. abscessus infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/efeitos dos fármacos , Tioestreptona/farmacologia , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Linhagem Celular , Citocinas/biossíntese , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium abscessus/classificação , Mycobacterium abscessus/genética , Tioestreptona/uso terapêutico , Peixe-Zebra
10.
Cell Res ; 25(6): 707-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25952668

RESUMO

Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed" or "regulated" necrosis. Here we show that programmed necrosis is activated in response to many chemotherapeutic agents and contributes to chemotherapy-induced cell death. However, we show that RIP3 expression is often silenced in cancer cells due to genomic methylation near its transcriptional start site, thus RIP3-dependent activation of MLKL and downstream programmed necrosis during chemotherapeutic death is largely repressed. Nevertheless, treatment with hypomethylating agents restores RIP3 expression, and thereby promotes sensitivity to chemotherapeutics in a RIP3-dependent manner. RIP3 expression is reduced in tumors compared to normal tissue in 85% of breast cancer patients, suggesting that RIP3 deficiency is positively selected during tumor growth/development. Since hypomethylating agents are reasonably well-tolerated in patients, we propose that RIP3-deficient cancer patients may benefit from receiving hypomethylating agents to induce RIP3 expression prior to treatment with conventional chemotherapeutics.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Metilação de DNA , Necrose/tratamento farmacológico , Necrose/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Neoplasias da Mama/genética , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Necrose/genética , Necrose/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 5: 4423, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25055241

RESUMO

Cytotoxin-associated gene A (CagA) is an oncoprotein and a major virulence factor of H. pylori. CagA is delivered into gastric epithelial cells via a type IV secretion system and causes cellular transformation. The loss of epithelial adhesion that accompanies the epithelial-mesenchymal transition (EMT) is a hallmark of gastric cancer. Although CagA is a causal factor in gastric cancer, the link between CagA and the associated EMT has not been elucidated. Here, we show that CagA induces the EMT by stabilizing Snail, a transcriptional repressor of E-cadherin expression. Mechanistically we show that CagA binds GSK-3 in a manner similar to Axin and causes it to shift to an insoluble fraction, resulting in reduced GSK-3 activity. We also find that the level of Snail protein is increased in H. pylori infected epithelium in clinical samples. These results suggest that H. pylori CagA acts as a pathogenic scaffold protein that induces a Snail-mediated EMT via the depletion of GSK-3.


Assuntos
Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/fisiologia , Regulação para Baixo/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Helicobacter pylori/fisiologia , Fatores de Transcrição/fisiologia , Biópsia , Carcinogênese/metabolismo , Carcinogênese/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Gástrica/metabolismo , Gastrite/metabolismo , Gastrite/patologia , Humanos , Transdução de Sinais/fisiologia , Fatores de Transcrição da Família Snail , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
12.
Oncotarget ; 5(12): 4438-51, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24970805

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. High mortality from HCC is mainly due to widespread prevalence and the lack of effective treatment, since systemic chemotherapy is ineffective, while the targeted agent Sorafenib extends median survival only briefly. The steroidal saponin 20(S)-ginsenoside Rg3 from Panax ginseng C.A. Meyer is proposed to chemosensitize to various therapeutic drugs through an unknown mechanism. Since autophagy often serves as cell survival mechanism in cancer cells exposed to chemotherapeutic agents, we examined the ability of Rg3 to inhibit autophagy and chemosensitize HCC cell lines to doxorubicin in vitro. We show that Rg3 inhibits late stage autophagy, possibly through changes in gene expression. Doxorubicin-induced autophagy plays a protective role in HCC cells, and therefore Rg3 treatment synergizes with doxorubicin to kill HCC cell lines, but the combination is relatively nontoxic in normal liver cells. In addition, Rg3 was well-tolerated in mice and synergized with doxorubicin to inhibit tumor growth in HCC xenografts in vivo. Since novel in vivo inhibitors of autophagy are desirable for clinical use, we propose that Rg3 is such a compound, and that combination therapy with classical chemotherapeutic drugs may represent an effective therapeutic strategy for HCC treatment.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/farmacologia , Ginsenosídeos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Autofagia , Feminino , Ginsenosídeos/administração & dosagem , Humanos , Masculino
13.
Biomaterials ; 35(26): 7501-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24917030

RESUMO

Circulating tumor cells (CTCs) are rare cells and the presence of these cells may indicate a poor prognosis and a high potential for metastasis. Despite highly promising clinical applications, CTCs have not been investigated thoroughly, due to many technical limitations faced in their isolation and identification. Current CTC detection techniques mostly take the epithelial marker epithelial cell adhesion molecule (EpCAM), however, accumulating evidence suggests that CTCs show heterogeneous EpCAM expression due to the epithelial-to-mesenchymal transition (EMT). In this study, we report that a microchip filter device incorporating slit arrays and 3-dimensional flow that can separate heterogeneous population of cells with marker for CTCs. To select target we cultured breast cancer cells under prolonged mammosphere culture conditions which induced EMT phenotype. Under these conditions, cells show upregulation of caveolin1 (CAV1) but down-regulation of EpCAM expression. The proposed device which contains CAV1-EpCAM conjugated bead has several tens of times increased throughput. More importantly, this platform enables the enhanced capture yield from metastatic breast cancer patients and obtained cells that expressed various EMT markers. Further understanding of these EMT-related phenotypes will lead to improved detection techniques and may provide an opportunity to develop therapeutic strategies for effective treatment and prevention of cancer metastasis.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/sangue , Caveolina 1/metabolismo , Moléculas de Adesão Celular/metabolismo , Separação Celular/instrumentação , Proteínas Imobilizadas/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Transição Epitelial-Mesenquimal , Desenho de Equipamento , Feminino , Filtração/instrumentação , Humanos , Células Neoplásicas Circulantes/patologia
14.
Int J Oncol ; 43(2): 591-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23708152

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because its cytotoxicity is selective for tumor cells. Despite promising outcomes in clinical trials using this ligand, sustained clinical responses have been impeded because cancer cells acquire resistance to TRAIL-based therapies. Ginseng, a well-known food product consumed globally, has been reported to reduce fatigue and possess antioxidant and antitumor activities. We explored the sensitizing influence of a formulated red ginseng extract (RGE) on TRAIL-derived cell death in hepatocellular carcinoma (HCC) cell lines and the underlying molecular mechanisms responsible for TRAIL sensitization. We found that the RGE promoted TRAIL-derived apoptosis in HepG2, Huh-7 and Hep3B cell lines. We also found that death receptor 5 expression was induced by the RGE and mediated by C/EBP homologous protein (CHOP). shRNA-induced downregulation of CHOP expression effectively suppressed cell death induced by combined treatment with the RGE and TRAIL in the HepG2 cell line, indicating that RGE-related upregulation of the CHOP protein plays an important role in sensitizing TRAIL-derived apoptosis. In summary, we showed that the RGE sensitized human HCC cell lines to TRAIL-derived cell death and could be utilized as a dietary supplement in combination with cancer treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ginsenosídeos/farmacologia , Neoplasias Hepáticas/metabolismo , Panax/química , Extratos Vegetais/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Transcrição CHOP/biossíntese , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Ginsenosídeos/química , Células Hep G2 , Humanos , Extratos Vegetais/química , Interferência de RNA , RNA Interferente Pequeno , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...